Статистические подходы к анализу и моделированию сезонности в демографических данных

  • Лилия Анатольевна Родионова Национальный Исследовательский Университет «Высшая Школа Экономики»
  • Елена Дмитриевна Копнова Национальный Исследовательский Университет «Высшая Школа Экономики»
Ключевые слова: демографические данные, прогнозирование, анализ временных рядов, ARIMA-модели, SARIMA-модели, HEGY-тест, статистические методы

Аннотация

Согласно майскому  указу Президента (2018 г.), в число национальных целей и стратегических задач развития РФ на период до 2024 г. входят «обеспечение устойчивого естественного роста численности населения РФ и повышение ожидаемой продолжительности жизни до 78 лет». Возросшая необходимость мониторинга текущей демографической ситуации, изучение структуры демографических показателей, пристальное внимание научного сообщества к реализации национальных целей обусловили выбор темы настоящего исследования.

В работе исследовались проблемы моделирования сезонности демографических показателей РФ (числа рождений, числа умерших, младенческой смертности, числа заключенных браков) по ежемесячным данным Росстата за период 2007-2018 гг. Зарубежные исследования показали, что, наряду с традиционными демографическими методами, ARIMA-модели дают хорошие результаты при прогнозировании демографических показателей (численности населения, уровня рождаемости и смертности, продолжительности жизни населения). Использование статистического подхода на основе SARIMA-моделей в данной работе позволило получить адекватные модели с хорошими статистическими и прогностическими свойствами. Стационарность процессов с учетом сезонности анализировали на основе HEGY-теста. Исследуемые в работе показатели имели ряд особенностей, которые были учтены при моделировании. Ряды числа рождений и числа умерших имели второй и первый порядки интегрируемости соответственно и содержали детерминированную сезонность, ряд числа заключенных браков имел первый порядок обычной и сезонной интегрируемости, ряд младенческой смертности не содержал сезонность, что было подтверждено на основе анализа автокорреляционной функции и периодограммы. Для анализируемых показателей в работе были построены точечные и интервальные оценки прогноза на 2019 г. Для сравнения качества прогнозирования SARIMA-моделей в работе были оценены также сезонные модели Хольта-Уинтерса.

Скачивания

Данные скачивания пока не доступны.

Литература

Aivazian S.A. (2010). Metody ekonometriki [Econometrics methods]. M.: Infra-M. (In Russ.)

Alho J. M., Spencer B. D. (2005). Statistical demography and forecasting. Springer.

Avdeev А., Blum А., Troitskaia I. (2002). Sezonnyy faktor v demografii rossiyskogo krest’yanstva v pervoy polovine 19 veka: brachnost’, rozhdayemost’, mladencheskaya smertnost’. Rossiyskiy demograficheskiy zhurnal, 1, 35-45. (In Russ.) Retrieved from http://www.demoscope.ru/weekly/2003/0135/analit04.php

Baranov A.A., Namazova-Baranova L.S., Al'bitskii V.Y., Terletskaya R.N. (2014). Trends of infant and child mortality in the Russian Federation in the period of 1990–2012. Annals of the Russian academy of medical sciences, 69(11-12), 31-38. (In Russ.) doi:10.15690/vramn.v69i11-12.1180

Beaulieu J.J., Miron J.A. (1993). Seasonal Unit Roots in Aggregate U.S. Data. Journal of Econometrics, 50(1), 305-328. doi:10.1016/0304-4076(93)90018-Z

Booth H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting, 22(3), 547–581. doi:10.1016/j.ijforecast.2006.04.001

Box G.P., Jenkins G.M. (1970). Time Series Analysis Forecasting and Control. San Francisco: Holden-Day.

Cancho-Candel R., Llan J., Ardura-Fernánde J. (2007). Decline and loss of birth seasonality in Spain: Analysis of 33 421 731 births over 60 years. Journal of Epidemiology and Community Health, 61(8), 713-718. doi:10.1136/jech.2006.050211

Dickey D.A., Fuller W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431. doi: 10.2307/2286348

Dickey D.A., Hasza D.P., Fuller W.A. (1984). Testing for Unit Root in Seasonal Time Series. Journal of the American Statistical Association, 79(386), 355-367. doi: 10.2307/2288276

Diebold F., Mariano R. (1995). Comparing Predictive Accuracy. Journal of Business and Economic Statistics, 13, 253–263. doi:10.2307/1392185

Eriksson A., Fellma J., Jord L., Pitkane K. (2008). Temporal, Seasonal, and Regional Differences in Births and Deaths in Åland (Finland). Human Biology, 80(2), 125-140. Retrieved from https://www.jstor.org/stable/41466530

Ershov S.M. (1888). Materialy dlya sanitarnoy statistiki Sviyazhskogo uyezda. Opyt sravnitel’noy demografii russkoy i tatarskoy narodnostey. (PHd Thesis). Saint-Petersburg: Imperatorskaya Voyenno-meditsinskaya akademiya. (In Russ.)

Feinstein C. (2002). Seasonality of Deaths in the U.S. by Age and Cause. Demographic Research, 6, 469-486. doi:10.4054/DemRes.2002.6.17

Findley D.F., Monsell B.C., Bell W.R., Otto M.C., Chen B.-C. (1998). New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program. Journal of Business and Economic Statistics, 16(2), 127−152. doi:10.2307/1392565

Gilyarovskiy F.V. (1866). Issledovaniya o rozhdenii i smertnosti detey v Novgorodskoy gubernii. Zapiski Imperatorskogo Russkogo Geograficheskogo obshchestva po otdeleniyu statistiki.V.1. Saint-Petersburg: LV-LVI. (In Russ.)

Gomez V., Maravall A. (1996). Programs TRAMO (Time series Regression with Arima noise, Missingobservations, and Outliers) and SEATS (Signal Extraction in Arima Time Series). Instructions for the User, WP 9628, Research Department, Banco de Espana.

Granger C.W. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14, 227–238. doi:10.1016/0304-4076(80)90092-5

Hiorns R.W. (1972). Mathematical Models in Demography. The Structure of Human Populations. Oxford: Clarendon Press.

Holt C.C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20, 5–10. doi:10.1016/j.ijforecast.2003.09.015

Hylleberg S., Engle R.F., Granger C. W.J., Yoo B.S. (1990). Seasonal Integration and Cointegration. Journal of Econometrics, 44, 215-238. doi:10.1016/0304-4076(90)90080-D

Hyndman R.J., Koehler A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22, 679–688. doi:10.1016/j.ijforecast.2006.03.001

Kale P., Andreozzi V., Nobre F. (2004). Time Series Analysis of Deaths Due to Diarrhoea in Children in Rio de Janeiro, Brazil, 1980-1998. Journal of Health, Population and Nutrition, 22(1), 27-33. URL: https://www.jstor.org/stable/23499006

Kantorovich G.G. (2002). Analiz vremennykh ryadov (kurs lektsiy). The HSE Economic Journal, 6(3), 379–401(In Russ.).Retrieved from https://ej.hse.ru/2002-6-3/26547293.html

Kashyap R.L., Rao A.R. (1976). Dynamic Stochastic Models from Empirical Data. Academic Press, New York, San Francisco. London.

Kendall M., Stûart A. (1976). Mnogomernyj statističeskij analiz i vremennye râdy [Multivariate statistical analysis and time series]. M.: Nauka. (In Russ.)

Kvasha E. A. (2003). Mladencheskaya smertnost’ v Rossii v XX veke. Sotsiologicheskie Issledovaniia, 6, 47-55. (In Russ.) Retrieved from http://ecsocman.hse.ru/socis/msg/18565164.html

Kwiatkowski D., Phillips P.C.B., Schmidt P., Shin Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54 (1–3), 159–178. doi:10.1016/0304-4076(92)90104-Y

Lee R. (1974). Forecasting Births in Post-Transition Populations: Stochastic Renewal with Serially Correlated Fertility. Journal of the American Statistical Association, 69(347), 607–617. doi:10.2307/2285990

Mahrova A.G., Bočkarev A.N. (2017). Maâtnikovaâ migraciâ v Moskovskom regione: novye dannye. Demoskop Weekly, 727-728. (In Russ.). Retrieved from http://www.demoscope.ru/weekly/2017/0727/tema04.php

Nakaji S., Parodi S., Fontana V., Umeda T., Suzuki K., Sakamoto J., Sugawara K. (2004). Seasonal Changes in Mortality Rates from Main Causes of Death in Japan (1970-1999). European Journal of Epidemiology, 19(10), 905-913. doi:10.1007/s10654-004-4695-8

Phillips P.C.B., Perron P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75 (2), 335-346. doi:10.12691/ijefm-2-6-4

Pollard J.H. (1970). On Simple Approximate Calculations Appropriate to Populations with Random Growth Rates. Theoretical Population Biology, 1, 208–218. doi:10.1016/0040-5809(70)90035-3

Saboia J.L.M. (1974). Modeling and Forecasting Populations by Time Series - The Swedish Case. Demography, 11, 483–492. doi:10.2307/2060440

Saboia J.L.M. (1977). Autoregressive Integrated Moving Average (ARIMA) Models for Birth Forecasting. Journal of the American Statistical Association, 72(358), 264–270. doi:10.2307/2286787

Scherbakova E. M. (2016). Rossiya: predvaritel’nyye demograficheskiye itogi 2016 goda (chast’ II). Demoskop Weekly, 717-718. (In Russ.). Retrieved from http://demoscope.ru/weekly/2017/0717/barom01.php

Scherbakova E. M. (2017). Rossiya: demograficheskiye itogi I polugodiya 2017 goda (chast’ II). Demoskop Weekly, 741-742. (In Russ.). Retrieved from http://demoscope.ru/weekly/2017/0741/barom01.php

Scherbakova E. M. (2018a). Rossiya: predvaritel’nyye demograficheskiye itogi 2017 goda (chast’ I). Demoskop Weekly, 759-760. (In Russ.). Retrieved from http://www.demoscope.ru/weekly/2018/0759/barom04.php

Scherbakova E. M. (2018b). Rossiya: predvaritel’nyye demograficheskiye itogi 2017 goda (chast’ II). Demoskop Weekly, 761-762. (In Russ.). Retrieved from f http://www.demoscope.ru/weekly/2018/0759/barom04.php

Scherbakova E. M. (2019). Rossiya: predvaritel’nyye demograficheskiye itogi 2018 goda (chast’ II). Demoskop Weekly, 803-804. (In Russ.). Retrieved from http://demoscope.ru/weekly/2019/0803/barom01.php

Stafoggia M., Forastiere F., Michelozzi P., Perucci C. (2009). Summer Temperature-related Mortality: Effect Modification by Previous Winter Mortality. Epidemiolog, 20(4), 575-583. doi:10.1097/EDE.0b013e31819ecdf0

Sun L., Klein E., Laxminarayan R. (2012). Seasonality and Temporal Correlation between Community Antibiotic Use and Resistance in the United States. Clinical Infectious Diseases, 55(5): 687-694. doi:10.1093/cid/cis509

Torri T., Vaupel J.W. (2012). Forecasting life expectancy in an international context. International Journal of Forecasting, 28, 519–531. doi:10.1016/j.ijforecast.2011.01.009

Turuntseva M. Yu. (2011). Assessment of Forecast Quality: the Simplest Methods. Russian Journal of Entrepreneurship, 12(8), 50-56. (In Russ.). Retrieved from https://en.creativeconomy.ru/lib/6937

Vinnik M.V. (2012). Sezonnost’ demograficheskikh protsessov (na primere metricheskikh knig Pokrovskogo prikhoda g. Barnaul, 1877-1886 gg.). V M.B. Denisenko (Ed.), Demograficheskiye aspekty sotsial’no-ekonomicheskogo razvitiya. Vyp. (pp. 251-267). M.: MAKS Press. (In Russ.)

Zhang Y. Bi P., Hiller J. (2008). Climate variations and salmonellosis transmission in Adelaide, South Australia: A comparison between regression models. International Journal of Biometeorology, 52(3), 179-187. doi:10.1007/s00484-007-0109-4

Опубликован
2019-07-29
Как цитировать
Родионова, Л. А., & Копнова, Е. Д. (2019). Статистические подходы к анализу и моделированию сезонности в демографических данных. Демографическое обозрение, 6(2), 104-141. https://doi.org/10.17323/demreview.v6i2.9874
Раздел
Оригинальные статьи