Short-term forecasting of mortality rates based on operational data using machine learning methods

  • Alexander Gusev Federal State Budgetary Institution “Central Research Institute of Health Organization and Informatization of the Ministry of Health of Russia”
  • Anna Andreychenko K-Skai LLC
  • Michael Kotlovskii Federal State Budgetary Institution “Central Research Institute of Health Organization and Informatization of the Ministry of Health of Russia”
  • Taras Tarasenko Federal State Budgetary Institution “Central Research Institute of Health Organization and Informatization of the Ministry of Health of Russia”
  • Ivan Deev Federal State Budgetary Institution “Central Research Institute of Health Organization and Informatization of the Ministry of Health of Russia”
  • Olga Kobiakova Federal State Budgetary Institution “Central Research Institute of Health Organization and Informatization of the Ministry of Health of Russia”
Keywords: population mortality, causes of death, individual depersonalized mortality data, pandemic COVID-19, digital healthcare, artificial intelligence, machine learning, decision support systems

Abstract

The study examined the possibility of creating and comparing short-term predictive mortality models of a region's population in the pre-COVID (2019) and COVID period (2020) using machine learning methods (CatBoost). We used operational data on the number of deaths from the Federal State Statistics Service, as well as additional reference materials of the constituent entities of the Russian Federation (demographic and general geographic data, information about healthcare facilities, health system indicators, medical monitoring, risk indicators, etc.).
For the 2019 data, the model error decreased as the learning period increased, from 13% to 0.5%. In the 2020 data, this decrease was not observed, and the error varied between 8 and 16%. It was not possible to improve the accuracy of forecasts by adding regional characteristics. The aggregated data had the features of a random process and no predictors that had a significant impact on the causes of death or were significantly associated with them were observed.

Downloads

Download data is not yet available.

References

Колесников А.С., Сапегин С.В. (2019). Использование технологии машинного обучения Catboost для планирования сервисного обслуживания грузовой спецтехники. В Информатика: проблемы, методология, технологии: сборник материалов XIX международной научно-методической конференции (сс. 1479–1484). Воронеж: Издательство «Научно-исследовательские публикации».

Лифшиц М.Л. (2021). Смертность в России в первый год пандемии covid-19 и потенциальные демографические последствия. В Парадигмы и модели демографического развития : сборник статей XII Уральского демографического форума, Том 1 (сс. 246–253). Екатеринбург: ИЭ УрО РАН.

Ahlburg D.A., Lutz W. (1998). Introduction: The Need to Rethink Approaches to Population Forecasts. Population and Development Review, 24, 1–14. https://doi.org/10.2307/2808048

Bravo J.M. (2021). Forecasting mortality rates with Recurrent Neural Networks: A preliminary investigation using Portuguese data. In CAPSI 2021 Proceedings: 21ª Conferência da Associação Portuguesa de Sistemas de Informação, "Sociedade 5.0: Os desafios e as Oportunidades para os Sistemas de Informação" (pp. 1-19).

Deprez P., Shevchenko P.V., Wüthrich M.V. (2017). Machine learning techniques for mortality modeling. European Actuarial Journal, 7, 337–352. https://doi.org/10.1007/s13385-017-0152-4

Dorogush A.V., Ershov V., Gulin A. (2018). CatBoost: gradient boosting with categorical features support. https://doi.org/10.48550/arXiv.1810.11363

Hainaut D. (2018). A neural-network analyzer for mortality forecast. ASTIN Bulletin: The Journal of the IAA, 48, 481–508. https://doi.org/10.1017/asb.2017.45

Lee R.D., Carter L.R. (1992). Modeling and Forecasting U. S. Mortality. Journal of the American Statistical Association, 87, 659–671. https://doi.org/10.2307/2290201

Levantesi S., Pizzorusso V. (2019). Application of Machine Learning to Mortality Modeling and Forecasting. Risks, 7(1), 26. https://doi.org/10.3390/risks7010026

Perla F., Richman R., Scognamiglio S., Wüthrich M.V. (2021). Time-series forecasting of mortality rates using deep learning. Scandinavian Actuarial Journal, 7, 572–598. https://doi.org/10.1080/03461238.2020.1867232

Richman R., Wüthrich M.V. (2021). A neural network extension of the Lee-Carter model to multiple populations. Annals of Actuarial Science, 15(2), 346–366. https://doi.org/10.1017/S1748499519000071

Rizzi S., Vaupel J.W. (2021). Short-term forecasts of expected deaths. The Proceedings of the National Academy of Sciences, 118(15), 1–7. https://doi.org/10.1073/PNAS.2025324118

Wang H., Paulson K.R., Pease S.A. et al. (2022). Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. Lancet, 399, 1513–1536. https://doi.org/10.1016/S0140-6736(21)02796-3

Published
2023-08-01
How to Cite
Gusev A., Andreychenko A., Kotlovskii M., Tarasenko T., Deev I., & Kobiakova O. (2023). Short-term forecasting of mortality rates based on operational data using machine learning methods. Demographic Review, 10(2), 132-142. https://doi.org/10.17323/demreview.v10i2.17768
Section
Original papers