Confidence estimation of demographic rates on example of mortality rates
Abstract
Demographers usually ignore a stochastic nature of demographic rates, in particular of mortality rates. However, a growing interest in longevity and mortality of small population groups or areas requires plausible solutions for confidence estimation of mortality measures. This paper provides a formula for posterior distribution of death rates in a homogeneous group of population. We also propose a new approach to estimate confidence limits for the death rate. We show that confidence limits for aggregate mortality measures, including life expectancy, can be easily estimated using the posterior distribution of death rates and the methods of stochastic simulation.
Downloads
References
Agresti A., Coull B. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. // The American Statistician,. 52: 119–126.
Andreev E.M.; Shkolnikov V.M. (2010). Spreadsheet for calculation of confidence limits for any life table or healthy-life table quantity MPIDR // Technical Report TR-2010-005.
Buckland S.T. (1983). Monte Carlo methods for confidence interval estimation using the bootstrap technique. // Journal of Applied Statistics, 10 (2): 194-212.
Buckland S.T. (1984). Monte Carlo confidence intervals. // Biometrics, 40: 811-817
Carpenter J., Bithell J. (2000). Bootstrap condence intervals: when, which, what? A practical guide for medical statisticians. // Statistics in Medicine 19: 1141–1164
Caselli G., Vallin J., Wunsch G. (2006). Demography: Analysis and Synthesis. Elsevier. London.
Chiang C.L. (1960a). A stochastic study of the life table and its applications: I. Probability distributions of the biometric functions. // Biometrics 6: 618-635.
Chiang C.L. (l960b). A stochastic study of the life table and its applications: 11. Sample variance of the observed expectation of life and other biomelric functions. // Human Bioilogy. 32: 221-238.
Chiang C.L. (1961). A stochastic study of the life table and its applications: III. The follow-up study with the consideration of competing risks. // Biometrics. 17: 57-78.
Chiang C.L. (1984). The life table and its applications. Robert E. Krieger publishing company. Malabar, Florida.
Demograficheskii entsiklopedicheskii slovar' (1985). [Demographic Encyclopedic Dictionary]. Valentei D.I. ed. Moscow. Sovetskaia entsiklopediia.
Fishman G.S. (1996). Monte Carlo: concepts, algorithms, and applications / G.S.Fishman. - New York: Springer, - 698 p. - (Springer series in operations research).
Gnedenko B.V. (2001). Ocherk po istorii teorii veroiatnostei. M. [Essay on the history of probability theory]. Moscow. URSS, 88 p.
Keyfitz N. (1976). Mathematical Demography: A Bibliographical Essay. // Population Index, 42, (1): 9-38.
Keyfitz N. (1977). Applied mathematical demography. New York, John Wiley & Son, 388 p. (Reedited in 1985 by Springer-Verlag, New York, 442 p).
Lewis J.R., Sauro J. (2006). When 100% Really Isn’t 100%: Improving the Accuracy of Small-Sample Estimates of Completion Rates. // Journal of usability studies. 1 (3): 136-150.
Lewis J.R., Sauro J. (2012). Quantifying the User Experience Practical Statistics for User Research. Elsevier Science & Technology.
Linnik U.V., Khalfina N.M. (1979). Doveritel'noe otsenivanie [Confidence estimation]. Matematicheskaia entsiklopediia. Vol. 2. Moscow. Sovetskaia entsiklopediia: 365-367.
Paevskii V.V. (1934). Ob izmerenii smertnosti migriruiuchshikh mass naseleniia [On measuring mortality of migratory population]. In: Trudy Demograficheskogo instituta Akademii nauk SSSR. Vol. 1. Leningrad: 63-134.
Preston S.H., Heuveline P., Guillot M. (2001). Demography. Measuring and Modeling Population Processes. Blackwell Publishers Inc. Maiden, Massachusetts.
Sachs L. (1982). Applied Statistics. A Handbook of Techniques. Springer-Verlag, New York - Heidelberg - Berlin.
Sauro J., Lewis J.R. (2005). Estimating Completion Rates from Small Samples using Binomial Confidence Intervals: Comparisons and Recommendations. // Proceedings of the Human Factors and Ergonomics Society Annual Meeting Orlando, FL.
Scherbov S., Ediev D.M. (2011). Significance of life table estimates for small populations: Simulation-based study of standard errors. // Demographic Research, 24(22): 527-550.
Shryock H.S., Siegel J.S. (1980). The methods and materials of demography, Vol. 1 - 2, , Washington DC.
Silcocks P.B.S., Jenner D.A., Reza R. (2001). Life expectancy as a summary of mortality in a population: statistical considerations and suitability for use by health authorities // Journal of Epidemiology & Community Health. 55:38–43.
Toson B., Baker A. (2003). Life expectancy at birth: methodological options for small populations. Office for National Statistics (ONS) UK. http://www.statistics.gov.uk/statbase/Product.asp?vlnk=8841
Wilson E.B. (1927). Probable inference, the law of succession, and statistical inference. // Journal of the American Statistical Association. 22: 209–212.