Spatial-temporal comparability of mortality structure by cause of death in Russia: the role of regional cause-of-death coding practices
Abstract
The study of mortality by cause of death is an important area of demography and public health that has practical significance for the formulation of health policy. However, as previous studies on Russia and other countries have shown, objective dynamics and regional differences in the structure of mortality by cause may conceal subjective factors, including “established” features of the selection of the initial cause of death. This paper assesses the spatial and temporal stability of mortality structures and cause-of-death coding practices in Russian regions.
Rosstat data on mortality from 67 main causes for 71 regions of the Russian Federation were used. An indirect regression method (separately for men and women) was applied, modified to compare consecutive periods: 2000–2004, 2005–2009, 2010–2014, and 2015–2019. Regional mortality structures were compared with the Russian average to identify: a) regions with distinct mortality structures, b) causes of death with high interregional variability in their contribution to overall mortality, and c) changes in these patterns over time. The method made it possible to identify causes of death whose differences in contribution between regions may be due to coding practices, as well as to track the dynamics of these differences.
For 39 causes of death, significant differences in their contribution to overall mortality between regions were identified throughout the period 2000–2019. Only for ten causes did the degree of variability change significantly in at least one of the periods. Among the regions, 14 (for men) and 22 (for women) demonstrated specificity relative to the average Russian mortality structure throughout 2000–2019, and in seven regions, changes in this specificity were recorded in at least one of the periods. The degrees of variability in the contributions of causes of death and the specificity of regional mortality structures are significantly correlated between periods. The results are stable when the sample of regions is expanded and external causes of death are excluded, and are consistent with previous studies of interregional differences in the coding of causes of death in Russia.
The differences obtained are at least partly due to cause of death coding practices. Therefore, it can be argued that the ten causes of death for which significant changes in the interregional variability of their contributions were found are characterized by persistent interregional inconsistencies in coding practices over time. This indicates the long-standing nature of differences in coding practices associated with the decentralization of the system for selecting the initial cause of death in Russia. To improve data comparability, it is necessary to unify practices through methodological recommendations, working with regions, and introducing automated coding systems.
Downloads
References
Андреев Е.М. (2016a). Структура причин смерти по свидетельствам разного типа. https://www.demoscope.ru/weekly/2016/0673/tema04.php
Андреев Е.М. (2016b). Плохо определенные и точно не установленные причины смерти в России. Демографическое обозрение, 3(2), 103–142. https://doi.org/10.17323/demreview.v3i2.1755
Данилова И.А. (2015). Особенности построения непрерывных рядов показателей смертности по причинам смерти в России. Вопросы статистики, 0(11), Article 11. https://doi.org/10.34023/2313-6383-2015-0-11-58-68
Зубаревич Н.В. (2010). Регионы России: Неравенство, кризис, модернизация. Независимый институт социальной политики.
Пьянкова А.И., Фаттахов Т.А. (2019). Смертность от дорожно-транспортных происшествий в России: Подходы к оценке, тенденции и перспективы. Демографическое обозрение, 6(3), 58–84. https://doi.org/10.17323/demreview.v6i3.9855
Сабгайда Т.П., Семёнова В.Г. (2017). Связь снижения сердечно-сосудистой смертности 2013-2015 годов с изменением смертности от других причин. Социальные аспекты здоровья населения, 57(5), Article 5. https://doi.org/10.21045/2071-5021-2017-57-5-2
Сабгайда Т.П., Семенова В.Г., Евдокушкина Г.Н., Секриеру Е.М., Никитина С.Ю. (2014a). Модификация причины смерти при статистическом учете смертности. Социальные аспекты здоровья населения, 37(3), Article 3. http://vestnik.mednet.ru/content/view/564/30/lang,ru/ (date of access – 11.03.2025).
Сабгайда Т.П., Семенова В.Г., Иванова А.Е., Евдокушина Г.Н., Секриеру Е.М., Никитина С.Ю. (2014b). Полнота учета в медицинских свидетельствах о смерти состояний, приведших к смерти. Здравоохранение Российской Федерации, 58(5), 4–8.
Российская экономическая школа (2024). Российская база данных по рождаемости и смертности. Россия и регионы, по причинам смерти, пятилетние возрастные группы. https://www.nes.ru/research-main/research-centers/demogr/demogr-fermort-data?lang=ru (data uploaded 02.07.2024).
Юмагузин В.В., Винник М.В. (2023). Оценка качества статистики смертности по причинам в регионах России. Мониторинг общественного мнения: экономические и социальные перемены, 2(174). https://doi.org/10.14515/monitoring.2023.2.2368
Antini C., Rajs D., Muñoz-Quezada M. T., Mondaca B. A. L., Heiss G. (2015). Reliability of cause of death coding: An international comparison. Cadernos de Saúde Pública, 31(7), 1473–1482. https://doi.org/10.1590/0102-311X00099814
Danilova I., Rau R., Barbieri M., Grigoriev P., Jdanov D.A., Meslé F., Vallin J., Shkolnikov V.M. (2021). Subnational Consistency in Cause-of-Death Data: The Cases of Russia, Germany, the United States, and France. Population, 76(4), 645–674. https://doi.org/10.3917/popu.2104.0693
Danilova I., Shkolnikov V.M., Jdanov D.A., Meslé F., Vallin J. (2016). Identifying potential differences in cause-of-death coding practices across Russian regions. Population Health Metrics, 14(1), Article 1. https://doi.org/10.1186/s12963-016-0078-0
Goldberger N., Applbaum Y., Meron J., Haklai Z. (2015). High Israeli mortality rates from diabetes and renal failure—Can international comparison of multiple causes of death reflect differences in choice of underlying cause? Israel Journal of Health Policy Research, 4(1), 31. https://doi.org/10.1186/s13584-015-0027-6
Grigoriev P., Jasilionis D., Klüsener S., Timonin S., Andreev E., Meslé F., Vallin J. (2020). Spatial patterns of male alcohol-related mortality in Belarus, Lithuania, Poland and Russia. Drug and Alcohol Review, 39(7), 835–845. https://doi.org/10.1111/dar.13037
Harteloh P., De Bruin K., Kardaun J. (2010). The reliability of cause-of-death coding in The Netherlands. European Journal of Epidemiology, 25(8), 531–538. https://doi.org/10.1007/s10654-010-9445-5
Hernández B., Ramírez-Villalobos D., Romero M., Gómez S., Atkinson C., Lozano R. (2011). Assessing quality of medical death certification: Concordance between gold standard diagnosis and underlying cause of death in selected Mexican hospitals. Population Health Metrics, 9(1), 38. https://doi.org/10.1186/1478-7954-9-38
Jensen H.H. (2006). Potential misclassification of causes of death from COPD. European Respiratory Journal, 28(4), 781–785. https://doi.org/10.1183/09031936.06.00152205
Khosravi A., Rao C., Naghavi M., Taylor R., Jafari N., Lopez A.D. (2008). Impact of misclassification on measures of cardiovascular disease mortality in the Islamic Republic of Iran: A cross-sectional study. Bulletin of the World Health Organization, 86(9), 688–696. https://doi.org/10.2471/BLT.07.046532
Kobak D. (2021). Excess Mortality Reveals Covid’s True Toll in Russia. Significance, 18(1), 16–19. https://doi.org/10.1111/1740-9713.01486
Lakkireddy D.R., Gowda M.S., Murray C.W., Basarakodu K.R., Vacek J.L. (2004). Death certificate completion: How well are physicians trained and are cardiovascular causes overstated? The American Journal of Medicine, 117(7), 492–498. https://doi.org/10.1016/j.amjmed.2004.04.018
Lu T.-H., Lee M.-C., Chou M.-C. (2000). Accuracy of cause-of-death coding in Taiwan: Types of miscoding and effects on mortality statistics. International Journal of Epidemiology, 29(2), 336–343. https://doi.org/10.1093/ije/29.2.336
Mikkelsen L., Iburg K.M., Adair T., Fürst T., Hegnauer M., von der Lippe E., Moran L., Nomura S., Sakamoto H., Shibuya K., Wengler A., Willbond S., Wood P., Lopez A.D. (2020). Assessing the quality of cause of death data in six high-income countries: Australia, Canada, Denmark, Germany, Japan and Switzerland. International Journal of Public Health, 65(1), 17–28. https://doi.org/10.1007/s00038-019-01325-x
Murray C.J.L., Dias R.H., Kulkarni S.C., Lozano R., Stevens G.A., Ezzati M. (2008). Improving the Comparability of Diabetes Mortality Statistics in the U.S. and Mexico. Diabetes Care, 31(3), 451–458. https://doi.org/10.2337/dc07-1370
Naghavi M., Makela S., Foreman K., O’Brien J., Pourmalek F., Lozano R. (2010). Algorithms for enhancing public health utility of national causes-of-death data. Population Health Metrics, 8(1), 9. https://doi.org/10.1186/1478-7954-8-9
Nikoloski Z., Shkolnikov V.M., Mossialos E. (2023). Preventable mortality in the Russian Federation: A retrospective, regional level study. The Lancet Regional Health - Europe, 29, 100631. https://doi.org/10.1016/j.lanepe.2023.100631
Omran A.R. (1971). The epidemiologic transition. A theory of the epidemiology of population change. The Milbank Memorial Fund Quarterly, 49(4), 509–538.
Papanova E.K., Shkolnikov V.M., Andreev E.M., Timonin S.A. (2018). High Life Expectancy of Muscovites Over Age 80: Reality or a Statistical Artifact? Advances in Gerontology, 8(2), 86–95. https://doi.org/10.1134/S2079057018020145
Percy C., Muir C. (1989). The International Comparability of Cancer Mortality Data. American Journal of Epidemiology, 129(5), 934–946. https://doi.org/10.1093/oxfordjournals.aje.a115226
Shkolnikov V., Meslé F., Vallin J. (1996). Health Crisis in Russia I. Recent Trends in Life Expectancy and Causes of Death from 1970 to 1993. Population: An English Selection, 8, 123–154.
Vallin J., Andreev E., Meslé F., Shkolnikov V. (2005). Geographical diversity of cause-of-death patterns and trends in Russia. Demographic Research, 12, 323–380. https://doi.org/10.4054/DemRes.2005.12.13


















