demor: R package for basic and advanced methods of demographic analysis
Abstract
Formal demographic analysis, including the construction of life tables, standardization of indicators, decomposition of changes, and modeling of demographic processes, requires complex calculations and data manipulation. Despite the advances in methods, many of them have not yet been implemented as ready-to-use, convenient tools in modern statistical environments. To address this issue, we present the demor package for the R programming language, designed to make formal demographic methods more accessible. The package provides a unified interface for a wide range of tools from different areas, lowering the barrier to the application of modern analytical approaches. The package includes functions for analyzing mortality (single and multiple life tables, single and multiple decompositions, measures of inequality – Gini index, e-dagger, years of life lost), fertility (TFR and its adjustment, mean age of childbearing, fertility models), and forecasting (Lee-Carter model with extensions, Leslie matrix, and cohort-component model). In addition, demor includes pre-processed data on mortality and fertility for Russia and its regions from RosBRiS. All this should help lower the threshold for entry into formal demography for researchers who are not professionally involved in computational methods and mathematical demography.
Downloads
References
Андреев Е.М. (1982). Метод Компонент в анализе продолжительности жизни. Вестник Статистики, (9), 42–47. https://www.demoscope.ru/weekly/knigi/andreev/andreev.html
Корчак-Чепурковский Ю.А. (1968). Влияние смертности в разных возрастах на увеличение средней продолжительности жизни (сс. 134-155). В А.Г. Волков (Научн. ред.) Изучение воспроизводства населения. Москва: Наука. https://www.demoscope.ru/weekly/knigi/IDEM_library/pdf/book07.pdf
Шульгин С.Г., Зинькина Ю.В. (2021). Оценка человеческого капитала в макрорегионах России. Экономика региона, 17(3), 888–901. https://doi.org/10.17059/ekon.reg.2021-3-12
Andreev E.M., Kingkade W.W. (2015). Average age at death in infancy and infant mortality level: Reconsidering the Coale-Demeny formulas at current levels of low mortality. Demographic Research, 33, 363–390. https://doi.org/10.4054/DemRes.2015.33.13
Andreev E.M., Shkolnikov V., Begun A. (2002). Algorithm for decomposition of differences between aggregate demographic measures and its application to life expectancies, healthy life expectancies, parity-progression ratios and total fertility rates. Demographic Research, 7, 499–522. https://doi.org/10.4054/DemRes.2002.7.14
Andreev E.M., Shkolnikov V.M. (2012). An Excel spreadsheet for the decomposition of a difference between two values of an aggregate demographic measure by stepwise replacement running from young to old ages. Rostock: Max Planck Institute for Demographic Research. https://doi.org/10.4054/MPIDR-TR-2012-002
Arriaga E.E. (1984). Measuring and explaining the change in life expectancies. Demography, 21(1), 83–96. https://doi.org/10.2307/2061029
Beltran-Sanchez H., Preston S., Canudas-Romo V. (2008). An integrated approach to cause-of-death analysis: cause-deleted life tables and decompositions of life expectancy. Demographic Research, 19, 1323–1350. https://doi.org/10.4054/DemRes.2008.19.35
Bongaarts J., Feeney G. (2000). On the Quantum and Tempo of Fertility: Reply. Population and Development Review, 26(3), 560–564. https://doi.org/10.1111/j.1728-4457.2000.00560.x
Bongaarts J., Feeney G. (1998). On the Quantum and Tempo of Fertility. Population and Development Review, 24(2), 271–291. https://doi.org/10.2307/2807974
Booth H., Maindonald J., Smith L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population studies, 56(3), 325–336. https://www.jstor.org/stable/3092985
Chiang C.L. (1968). Introduction to Stochastic Processes in Biostatistics. New York: John Wiley & Sons, Inc.
Elandt‐Johnson R.C., Johnson N.L. (1999). Survival Models and Data Analysis. Wiley. https://doi.org/10.1002/9781119011040
Ghislandi S., Sanderson W.C., Scherbov S. (2019). A Simple Measure of Human Development: The Human Life Indicator. Population and Development Review, 45(1), 219–233. https://doi.org/10.1111/padr.12205
Lee R.D., Carter L.R. (1992). Modeling and forecasting US mortality. Journal of the American statistical association, 87(419), 659–671. https://doi.org/10.1080/01621459.1992.10475265
Lee R., Miller T. (2001). Evaluating the performance of the lee-carter method for forecasting mortality. Demography, 38(4), 537–549. https://doi.org/10.1353/dem.2001.0036
Li N., Lee R., Gerland P. (2013). Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections. Demography, 50(6), 2037–2051. https://doi.org/10.1007/s13524-013-0232-2
Martinez R., Soliz P., Caixeta R., Ordunez P. (2019). Reflection on modern methods: years of life lost due to premature mortality—a versatile and comprehensive measure for monitoring non-communicable disease mortality. International journal of epidemiology, 48(4), 1367–1376. https://doi.org/10.1093/ije/dyy254
Pollard J.H. (1982). The expectation of life and its relationship to mortality. Journal of the Institute of Actuaries, 109(2), 225–240. https://doi.org/10.1017/S0020268100036258
Ponnapalli K.M. (2005). A comparison of different methods for decomposition of changes in expectation of life at birth and differentials in life expectancy at birth. Demographic Research, 12, 141–172. https://doi.org/10.4054/DemRes.2005.12.7
Preston S.H., Heuveline P., Guillot M. (2001). Demography: measuring and modeling population processes. Malden, MA: Blackwell Publishers
Rabbi A.M.F., Mazzuco S. (2021). Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity. European Journal of Population, 37(1), 97–120. https://doi.org/10.1007/s10680-020-09559-9
Schoen R. (2004). Timing effects and the interpretation of period fertility. Demography, 41(4), 801–819. https://doi.org/10.1353/dem.2004.0036
Ševčíková H., Li N., Kantorová V., Gerland P., Raftery A. (2016). Age-Specific Mortality and Fertility Rates for Probabilistic Population Projections. In R. Schoen (Ed.), Dynamic Demographic Analysis (pp. 285–310). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-26603-9_15
Shkolnikov V., Andreev E.M., Begun A. (2003). Gini coefficient as a life table function: Computation from discrete data, decomposition of differences and empirical examples. Demographic Research, 8, 305–358. https://doi.org/10.4054/DemRes.2003.8.11
Sobotka T. (2004). Is Lowest‐Low Fertility in Europe Explained by the Postponement of Childbearing? Population and Development Review, 30(2), 195–220. https://doi.org/10.1111/j.1728-4457.2004.010_1.x
Sobotka T., Lutz W. (2011). Misleading Policy Messages Derived from the Period TFR: Should We Stop Using It? Comparative Population Studies, 35(3). https://doi.org/10.12765/CPoS-2010-15
Sullivan D.F. (1971). A Single Index of Mortality and Morbidity. HSMHA Health Reports, 86(4), 347. https://doi.org/10.2307/4594169
Vaupel J.W., Romo V.C. (2003). Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday. Demography, 40(2), 201–216. https://doi.org/10.1353/dem.2003.0018
Veenhoven R. (1996). Happy life-expectancy: A comprehensive measure of quality-of-life in nations. Social Indicators Research, 39(1), 1–58. https://doi.org/10.1007/BF00300831


















